名廠言明:為何用大量程測量小信號(hào)不適宜
發(fā)布時(shí)間:2017-03-09 責(zé)任編輯:sherry
【導(dǎo)讀】許多人認(rèn)為大量程可測量的范圍很大,大小信號(hào)都可以兼顧,因此在很多情況下都優(yōu)先選擇較大的量程進(jìn)行測量,或者不注意選擇,直接默認(rèn)設(shè)置,如此使用時(shí),儀器測量的值依然能正常顯示,看起來數(shù)值也似乎還算準(zhǔn)確。那到底這樣使用有什么問題呢,下面以一臺(tái)功率分析儀來舉例。
為增大儀器可測量的范圍(動(dòng)態(tài)范圍),絕大多數(shù)測量儀器都會(huì)設(shè)置多個(gè)量程,以滿足不同情況下測量不同大小信號(hào)的需求。當(dāng)使用大量程測試小信號(hào)時(shí)會(huì)有什么結(jié)果呢?很多人回答會(huì)造成誤差增大,但往往說不上來原因,今天我們將會(huì)帶大家深入討論一下這樣使用帶來的影響和原因。
許多人認(rèn)為大量程可測量的范圍很大,大小信號(hào)都可以兼顧,因此在很多情況下都優(yōu)先選擇較大的量程進(jìn)行測量,或者不注意選擇,直接默認(rèn)設(shè)置,如此使用時(shí),儀器測量的值依然能正常顯示,看起來數(shù)值也似乎還算準(zhǔn)確。那到底這樣使用有什么問題呢,下面以一臺(tái)功率分析儀來舉例。
精度算法解密
圖1 所示是致遠(yuǎn)電子PA8000和PA5000功率分析儀5A功率板卡的測量精度,我們以此為例。在給出的精度值中,儀器的精度指標(biāo)標(biāo)示為“%讀數(shù)+%量程”,絕大多數(shù)測量設(shè)備亦是這樣標(biāo)注的,以45-66Hz的頻率段來說,PA8000精度為“0.01%+0.03%”,PA5000精度為0.10%+0.05%,這意味著使用1000V量程測量800V的信號(hào)時(shí),最壞情況下PA8000誤差為0.01%*800V+0.03%*1000V=0.38V,PA5000為1.3V,對于800V的信號(hào)這樣的誤差微乎其微。但是如果使用1000V量程測量10V信號(hào),PA8000最大誤差為0.301V,而PA5000將達(dá)到0.51V,這樣的誤差相對于10V信號(hào)來說已比較大。對于使用者來說考慮的是測量值與實(shí)際值之間的誤差,但是對于測量儀器來說大量程時(shí)的固有誤差將會(huì)使其測量小信號(hào)時(shí)的誤差顯著增加,可能會(huì)帶來使用者不希望看到的結(jié)果。
圖 1 致遠(yuǎn)PA8000/PA5000功率分析儀5A功率板卡精度表
ADC量化誤差影響
出現(xiàn)這種情況的原因首先是由測量設(shè)備內(nèi)部的ADC產(chǎn)生的量化誤差引起的,假設(shè)測量設(shè)備內(nèi)部包含一個(gè)11位的ADC,ADC共有211=2048個(gè)有效位,在1000V的量程(峰峰值)下,考慮最大±1000V的輸入共2048個(gè)有效位,則由于不可避免的噪聲的影響,ADC每跳動(dòng)一個(gè)最小單位1LSB,產(chǎn)生的量化誤差大約會(huì)有2000V/2048≈1V。如果使用該量程測量10.3V這樣的信號(hào),很顯然單次ADC取樣的最小分辨率已無法識(shí)別0.3V這樣刻度(在圖 2的量化示意圖中0.3V處在兩個(gè)刻度中間),當(dāng)然無法測得正確的值。如果無規(guī)則噪聲的峰值能大于1LSB時(shí),多次采樣取平均值后可以提高測量系統(tǒng)的有效位數(shù),但這樣的因素不在我們考慮的范圍之內(nèi)。
這樣說來似乎高位數(shù)的ADC可顯著降低量化誤差,但遺憾的是高位數(shù)和高采樣率是一個(gè)矛盾,因?yàn)楦邘挄?huì)帶來更高的噪聲,同時(shí)在現(xiàn)有的ADC制作工藝和架構(gòu)的限制之下,高采樣率的ADC很難同時(shí)做到高有效位數(shù)。如我們的PA8000和PA5000希望在5MHz的帶寬下提供2Mbps的采樣率,如此高的帶寬情況下將難以把有效位數(shù)提高到18位以上,因此我們的PA8000使用了18位、2Mbps采樣率的ADC來減少量化誤差。
圖 2 量化示意圖
前端模擬電路的噪聲、失調(diào)影響
另一個(gè)不可忽視的問題是模擬電路本身所帶來的噪聲、失調(diào)和增益誤差的影響,如圖 3所示簡化的電壓測量電路,第一張圖為1000V量程的測量通路,最高輸入電壓1000V時(shí)通過衰減電路會(huì)輸出1V電壓,放大電路不放大,跟隨電壓后送入ADC進(jìn)行采樣。如果輸入10V時(shí)衰減電路只能輸出0.01V的電壓,首先如此小的信號(hào)疊加噪聲后會(huì)對信號(hào)本身產(chǎn)生很大影響,其次由于放大電路(運(yùn)放)的失調(diào)和增益誤差的影響,哪怕只產(chǎn)生0.1mV的失調(diào)和增益誤差都會(huì)對0.01V的有效信號(hào)產(chǎn)生很大的誤差。在儀器的出廠前會(huì)對這些誤差進(jìn)行校準(zhǔn)以消除固有的偏差,不過因使用過程中溫度和老化的影響這些值會(huì)發(fā)生變化,在標(biāo)示儀器的精度指標(biāo)時(shí)會(huì)留有一定的余量以確保儀器處在可保證的精度內(nèi),但是如果用大量程去測量小信號(hào)時(shí)溫度和老化產(chǎn)生的影響將無法得到保證。
在測量較小信號(hào)時(shí)應(yīng)使用圖 3 第二張所示的電路,首先衰減電路進(jìn)行較小倍數(shù)的衰減,10V輸入時(shí)衰減電路輸出0.1V,然后放大電路將有效信號(hào)放大10倍到1V送入ADC取樣。這樣的處理方式將會(huì)顯著減少噪聲、失調(diào)和增益誤差的影響,在包含小量程的測量設(shè)備中通常會(huì)采用這樣的方式或等效的方式進(jìn)行處理。
特別推薦
- 音頻放大器的 LLC 設(shè)計(jì)注意事項(xiàng)
- 服務(wù)器電源設(shè)計(jì)中的五大趨勢
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實(shí)現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個(gè)重要參數(shù)!
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計(jì)指南,拿下!
技術(shù)文章更多>>
- MD&M West展會(huì):Micro Crystal攜創(chuàng)新定時(shí)元件,共繪醫(yī)療科技新藍(lán)圖
- PLC 交流模塊的 TRIAC 輸出故障排除
- 解鎖AI設(shè)計(jì)潛能,ASO.ai如何革新模擬IC設(shè)計(jì)
- 汽車拋負(fù)載Load Dump
- 50%的年長者可能會(huì)聽障?!救贖的辦法在這里
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
功率電阻
功率放大器
功率管
功率繼電器
功率器件
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)