圖1. ADC量化誤差
一文帶你了解ADC的不精確性
發(fā)布時間:2019-12-22 責任編輯:lina
【導讀】ADC廣泛用于各種應(yīng)用中,尤其是需要處理模擬傳感器信號的測量系統(tǒng),比如測量壓力、流量、速度和溫度的數(shù)據(jù)采集系統(tǒng)……任何設(shè)計中,理解這些類型應(yīng)用的總系統(tǒng)精度始終都是非常重要的,尤其是那些需要對波形中極小的靈敏度和變化進行量化的系統(tǒng)。
理想情況下,施加于信號鏈輸入端的每一個伏特都由ADC以數(shù)字表示一個伏特的輸出。但是,事實并非如此。所有轉(zhuǎn)換器和信號鏈都存在與此相關(guān)的有限數(shù)量誤差。本文揭示了轉(zhuǎn)換器內(nèi)部的不精確性累積到何種程度即會導致這些誤差。定義新設(shè)計的系統(tǒng)參數(shù)時,若測量精度極為重要,那么這些內(nèi)容對于理解如何正確指定一個ADC有著重要作用。
ADC的不精確性
無論何種信號鏈,轉(zhuǎn)換器都是系統(tǒng)的基本要素。為設(shè)計選擇的任何ADC都會決定系統(tǒng)的總精度。換言之,系統(tǒng)精度不可能高于轉(zhuǎn)換器的最低有效位(LSB)大小。為了表明這一點,讓我們來看一個簡短的ADC不精確性指南。
首先,注意到由于ADC不是理想的,并且分辨率有限,因此它們在輸出端只能顯示有限數(shù)量的信息表示。表示的信息數(shù)量由轉(zhuǎn)換器滿量程輸入除以2N表示,N為轉(zhuǎn)換器的理想位數(shù)。
圖1. ADC量化誤差
例如,假設(shè)選擇一個12位ADC,則它可在輸出端以4096個數(shù)字表示施加于轉(zhuǎn)換器輸入端的任何信號。這些表示信息確實存在有限量的誤差。因此,如果12位ADC的輸入滿量程(VFS)為10 V p-p,那么其理想情況下的LSB大小為2.44 mV p-p,精度為±1.22 mV。
(公式一)
而實際上,ADC是非理想的。在轉(zhuǎn)換器內(nèi)部存在一定噪聲, KT/C甚至直流中也有噪聲。記住,1 k?電阻等效于4 nV?Hz (1 Hz帶寬,25°C)。注意,查看12位ADC數(shù)據(jù)手冊時,SNR通常為大約70 dB到72 dB。但是,根據(jù)下列公式,一個12位ADC理想情況下應(yīng)當具有74 dB:
(公式二)
因此,實際上12位分辨率是無法達到的,因為轉(zhuǎn)換器本身存在一定的不精確性,如圖2所示。
圖2. ADC的不精確性
這些不精確性或誤差決定了轉(zhuǎn)換器表示信號的效率,并最終為信號鏈所接收。失調(diào)誤差定義為傳遞函數(shù)無法通過零點的模擬值。增益誤差是失調(diào)誤差為零時理想與實際傳遞函數(shù)之間的滿量程數(shù)值之差。通常意義上的線性度誤差或非線性度是指零電平與滿量程之間的直線偏差,如圖1所示。
有關(guān)ADC不精確性的更多信息
對最基本的模數(shù)轉(zhuǎn)換器誤差進行定義并有所了解后,再說明這些誤差的區(qū)別會有些幫助。大部分ADC的失調(diào)和增益都存在這種小誤差,通??梢院雎曰蛲ㄟ^外部模擬電路調(diào)節(jié)(消除),或者采用數(shù)字技術(shù)校正。然而,諸如線性度、量化和溫度系數(shù)等其他誤差無法輕易調(diào)節(jié)或消除。
模數(shù)轉(zhuǎn)換器線性度只與轉(zhuǎn)換器自身有關(guān),即取決于架構(gòu)和工藝變化。有很多方法可以校正,但都很昂貴。設(shè)計人員有兩種選擇:
購買更好、成本更高的轉(zhuǎn)換器,或采用數(shù)字手段校正線性度,數(shù)字校正的成本也十分高昂,這意味著可能需要更多資源來指定DSP或FPGA,因為線性度會隨溫度和工藝的變化而改變;
根據(jù)采樣速率、IF和分辨率,數(shù)字校正可能需要廣泛的特性表述和查找表,以便即時校正或調(diào)節(jié)ADC的性能。
線性度有兩種類型的誤差:它們是差分非線性和積分非線性, 通常分別稱為DNL和INL。
DNL定義為偏離理想值的一切誤差或偏差。換言之,它表示兩個相鄰代碼的模擬差與理想代碼值VFS/2N之間的偏差??蓪⑵淇醋髋cADC的SNR性能相關(guān)的因素。隨著代碼的偏差越來越大,轉(zhuǎn)換數(shù)也隨之下降。該誤差在溫度范圍內(nèi)的界限為±0.5 LSB,可保證無失碼。
INL定義為零電平和滿量程之間的理想直線近似曲率偏差。多數(shù)情況下,INL決定了ADC的SFDR性能。INL總偏差形狀可以決定最主要的諧波性能。比如,INL曲線呈弓形會相應(yīng)產(chǎn)生更差的偶次諧波,而INL曲線呈S弓形則通常產(chǎn)生奇次諧波。該誤差本質(zhì)上與頻率有關(guān),并與這類誤差分析無關(guān)。
哪怕可以消除靜態(tài)失調(diào)和增益誤差,與失調(diào)和增益誤差有關(guān)的溫度系數(shù)將會依然存在。
例如,一個12位ADC具有10 ppm增益誤差,或FSR/°C = 0.001%/°C。12位系統(tǒng)中的1 LSB為¼096,或者近似等于0.024%。
因此,若125°C ? (–40°C至+85°C),則產(chǎn)生±2.5 LSB增益溫度系數(shù) 誤差,或0.001% × 125 = 0.125%,其中,0.125/0.024 = 5.1或±2.55 LSB。
對于失調(diào)溫度系數(shù),5 ppm失調(diào)誤差或FSR/°C = 0.0005%/°C。
這將產(chǎn)生±1.3 LSB失調(diào)溫度系數(shù)誤差,或 0.0005% × 125 = 0.0625。其中,0.0625/0.024 = 2.6或±1.3 LSB。
原標題:快進來,今天我們談?wù)凙DC的不精確性
(來源:亞德諾半導體)
特別推薦
- 音頻放大器的 LLC 設(shè)計注意事項
- 服務(wù)器電源設(shè)計中的五大趨勢
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個重要參數(shù)!
- 功率器件熱設(shè)計基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計指南,拿下!
技術(shù)文章更多>>
- PLC 交流模塊的 TRIAC 輸出故障排除
- 解鎖AI設(shè)計潛能,ASO.ai如何革新模擬IC設(shè)計
- 汽車拋負載Load Dump
- 50%的年長者可能會聽障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網(wǎng)交換機
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
功率電阻
功率放大器
功率管
功率繼電器
功率器件
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護器
過熱保護
過壓保護